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SUMMARY 

Starting from EYRING's transition state theory i t  is demonstrated for systems obeying the superposit- 

ion principle that the frequency shift factors of isotherm mastercurves of the viscoelastic functions 

as well as the temperature shift factors of the isochrone ones are unequivocally interrelated with the 

apparent activation energy of f low. The method for the evaluation of the activation energy from vis- 

coelastic data is discussed, considering the moduli surfaces in the reciprocal temperature - frequency 

space. Experimental data prove the rel iabi l i ty of the approach. It is demonstrated that i t  is much 

more suitable to construct mastercurves as well as master surfaces in this way, because it is not 

necessary to apply measurements at low frequencies, which are unavoidable when the curves are con- 

structed by empirical shift in the usual way. 

SCOPE 

Composite curves of viscoelastic functions generally are constructed by shift ing the isotherm data 

empirically along the frequency axis. SCHNEIDER and CANTOW l) have shown recently that those 

curves may be obtained too on the basis of isochrones, by a shift along the ] / T  axis. This shift along 

l / T  is equivalent to the displacement of the isochrones of the dynamic viscosity along the slope of 

zero shear apparent activation energy of f low. It has been demonstrated that both types of shift are 

related to this zero shear activation energy of f low, so that an unique shift mechanism is ef fect ive in 

both cases. Isochrone mastercurves are favourable for studies on polymer blends part icular ly,  because 

the problematical choice of reference temperatures is circumvented. 

The approach discussed in the fol lowing has been motivated by three demands 

to determine activation energies in the frequency domain of non-Newtonian flow on macroscopic 

scale of linear viscoelastic bodies, 

to substitute the empirical shift procedures by theoretical ly supported ones 

to minimize the time required to realize experimentally reliable reduced data. 

INTRODUCTION 

Relaxation experiments on linear viscoelastic bodies may be described by the relaxation modulus 

G( t )  = o ( t ) /Yo  = q ~ ( t ) + G  (1) 

This equation is related to shear experiments, and i t  presents the relation between G(t) and relax- 

ation stress, a ( t ) ,  and shear, Yo' resp., relaxation function, s (t), and equilibrium modulus, G ~o" 

For dynamical relaxation experiments the fol lowin 8 relationships are valid 

c ( t ) / y ( t )  = G* = G +G' + i G "  (2) G " / G '  = tg 6 (3) 

o ( t ) / [ d y ( t ) / d t ]  = q : G ' ' / to  , (4) 
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with G* the complex modulus ,G '  the  s torage modulus9 G" the  loss modulus,  r~ the  dynamic viscosity~ 

with tg 6 the loss factor  and ~ the  angular velocity.  Essentially, all these  viscoelastic magni tudes  

are describing the  sum of identical relaxation processes ,  which are  caused by s t ress ing mechanical ly  

a linear viscoelastic body, For macromolecules  the generalized MAXWELL model is describing best 

these  relaxation processes .  The differing relaxation t imes  e for chain segments  of d i f ferent  lengths 

are taken into account  by the relaxat ion spect rum F(O). Thus, with H(O) ~ 0F(O) ,  the viscoelast ic 

quantities may be written in the form (6) 
c o  

~0(t) = [ H(0) e x p ( - t / 0 ) d l n 0  (5) G' (~) = --  fH(0)(0JS)2/ [ l+(0aO)2]d lnO 
- -  o ~  - c o  

oo ~o (~0)2] 
a " ( ~ )  = r j  H ( 0 ) ~ 0 1 [ l + ( ~ 0 ) 2 ] d l n 0  (7) n = f 0 H ( 0 )  l [ l +  d ln0 .  (8) 

By H(0)al l  viscoelastic properties of a body are determined. Its temperature dependence has to be 

known in order to derive the temperature dependence of the viscoelastic quantities. As a conse- 

quence of the superposition principle all relaxation times of a spectrum exhibit identical tempera- 

ture dependence . It has to be noted that the overall viscosity rl (Equ. 8) as well as the viscosity of 

the individual relaxation processes are assumed to be independent on strain and shear~ resp. Thus 

Newtonian flow is assumed for the molecular flow processes although macroscopically no Newtonian 

flow is exhibited by the linear viscoelastic body. Newtonian flow is assumed at molecular scale of 

the viscoelastic body, which is subjected to deformation processes. 

THEORETICAL BASIS 

Temperature dependence o/ relaxation time and o5 dynamic visCosity 

According to Equ. (8) q gets time independent for ~o -* 0 

lim rl -- % f 0 ( T )  H[0(T) ]din 0 (9) 
60 -~ O - a o  

For the  Newtonian flow the ARRHENIUS equation is valid 

n o = B exp (E/RT) (10) 

As a consequence of the validity of the  superposition principle F(0) is directly proportional to the  

absolute t empera ture  necessar i ly .  Consequent ly ,  the exponential  te rm has to be embodied in 0(T).  

Thus Equ.(9) may be wri t ten as E q u . ( l l ) ,  whereby for an individual relaxat ion process P of the  

spectrum, 0p(T) = B'peXp (E/RT)~is valid. B' will be related to the relaxat ion t imes  of th~ pro- 

cesses ,  i. e. B'[0(T)]. 
m oo 

B' [ 0 (T ) ] exp (E /RT)H [0 (T ) ] d l n0  = exp(EIRT) f S' [ O ( T ) ] H [ 0 ( T ) ] d l n  O ( i f )  
i3~ =- -~o 

Equ. (g) may be transformed also 
ao 

n = exp(EIRT) [ B' [0(T) ]  H[0(T)]  / { I  + [0o0(T)] 2 } d i n 0  = P(~,T) exp(EIRT) ( [2)  
- o o  

Equ. (12) differs from the ARRHENIUS equation only by the fact that the preexponentia! factor is 

also a function of time, for dynamical measurements a function of frequency. 

This equation can be obtained too by appiying the formalism of rate processes to the displacement 

events in relaxation processes. Assuming the zero order kinetics characteristic for the transport 
processes the rate equation is given by 

(Ak-+B) ; d (B) /d t  = k ; t = (B)k -I  
(13) 

The rate constant may be expressed by the apparent activation parameters introduced by EYRING, 
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A#S and A#H 2) 3). Substituting the entropic term by the factor B* = (h /kBT)exp( -AS#/R) ,  the 

temperature dependence of the relaxation t ime may be wr i t ten 

O(T) = t(T) = (B)B*  exp (AH#1RT) (14) 

In comparison with exp(AHII:/RT), B* changes only slowly with temperature. Thus i t  may be 

assumed constant when evaluating measurements over a l imited temperature range. 6H I/( indicated 

as E mostly) is the (apparent) act ivat ion energy of the process, of the relaxation processes 

in our case. Consequently, (15)= Z(0) wi l l  be the number of elementary relaxations per unit 

volume, which belong to relaxation process P with the relaxation t ime 0. Introducing this relax- 

ation t ime into Fqu. (12) Equ. (15) is obtained, which gives the same evidence like Equ. (12) 
co  

n = B* exp (EIRT) f Z [ 0 ( T ) ] H [ O ( T ) ] I  { ! +  [0~O(T)]2}dln O = P'(0J,T)B* exp(EIRT) . (15)  
- -oo  

Temperature dependence of relaxation time spectrum and of shift factors 

The viscoelastic properties depend on the relaxation t ime spectrum as well  as on a function depend- 

ing on the frequency of measurement. The relations for the viscoelastic magnitudes as functions 

of the logar i thm~ relaxation t ime spectrum are 

G' ((o,T) - - J  H[0(T) ] [w0(T) ]2 1 { I + [~0(T) ]2} dln 0 Storage modulus (16) 
co  

G"(0~,T) = I H [ 0 ( T ) ] [ ~ 0 0 ( T ) ]  l { I + [ c 0 0 ( T ) ] 2 } d l n 0  Loss modulus (17) 
Q 6  

oo 

rl (~o,T) =_ J 0(T) Hie(T) ] / {l + [0J0(T) ]2} din 0 Dynamic viscosity (18) 

From the frequency functions for G' and rl (Figure 1) the following equations result 

(~00)2_~__~ ~ . . . .  (19) 

~2 -1 0 1 2 
In (coO) 

1 + (coO) 2 

- 2  -1 O 1 2 

In (coO) 

Figure I:  Frequency functions of 
G' and rl versus In(0~0) The relaxation t ime spectra b and c in Fig. 2 are re-  

duced to temperature T I via temperature and density correction 

H'[0(T2)] = H[O(T2) ]TIP l /T202  H'[0(T3)] =H[0(T3) ]TI01 /  T3P 3 

The ratios of the part ial  areas to the total  frequency independent area are determined by the rela-  

t ive position of the frequency of measurement to the relaxation times of the spectrum. [ In ( I /  co I )  - 

In 0p ]  consequently is a function of the frequency at constant temperature according to 
oo 

I - J  H ' [O(T) ]  [0~I0(T) ]2 1 { I  + [L010(T)]2} dln 0 (22) 
co  co  

l l =  f H ' [ 0 ( T ) ] /  {l+[0Jl0(T)]2}dln0 (23) I+ If= f H ' [ O ( T ) ] d l n O  . (24) 
- - c o  ~ c o  

I '  = ~J  (toO) 2 /  [l+(~oO) 2]din(to0) 
- - o u  

c o  

I f '  = f l / [ l+( (o0)2]dlnOoO) 
- - c o  

I '  + II ) = f din(to0) 

Applying these findings to the logarihmic relaxation spec- 

trum (Figure 2)9 the latter may be splitted into a relaxed 

part (If) and an unrelaxed one (I). These parts are pre- 

sented in integral form as areas as used in the functions 

of viscoelastic quantities. Area II enters in the viscosity 

and the loss modulus, whereas the storage modulus results 

from area l (Figure 2). 
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The Figures show~ how due to the temperature 

dependent shiIt ol the relaxation spectrum a 

constant frequency of measurement~ tol '  changes 

its relative position to the relaxation times of the 

spectrum, implying synchronously a change of the 

areas I and II, of the loss and of the storage mo- 

dulus. Supposing now the frequency of measu- 

rement, to2 ~ one may assume for case c that 

the area II becomes equal the total area and 

wil l maintain that value at smaller frequencies 

and higher temperatures. This situation coincides 

to macroscopic Newtonian flow. 

The applicability of the superposition priciple, 

which is valid for most macromolecular compounds, 

is the actual proof that all relaxation times of a 

spectrum exhibit identical temperature dependen- 

ces. Consequently, the reduced spectrum, H'[0p(T)], 

in the form H' [0p(T)  - 0(T)], is a Iunction~ which 

is independent on temperature, Because i t  has to 

be related to an absolute value~ 0(T) = 0, due to 

the temperature dependences of the relaxation 

times, a horizontal shift ol H' [0(T)]  by a quanti- 
Figure 2: Split of the logarithmic relaxation 
spectrum into (If) relaxed and (1) unrelaxed part ty In a T along the logarithmic time axis wil l  result. 

{ i n ( l l t o l ) _  l:n[0pT2)] }_  { l n ( l l t o l ) _  In [0p(T l ) ]  } = I n [0p (T2 ) ] -  In [0p(Tl )  ] = - InaT . (25) 

If asking for the frequencies at which identicaJ partial areas, i .e .  modulQ are obtained irrespec- 

t ive of the temperatures of the measurement, one concludes that these frequencies toe take a tem- 

perature independent fixed position relatively to shifting relaxation times of the spectrum. Thus 

Equ. (25) may be extended In ( I /  toe)T - In [0p(T)]  = const 

ln ( l /w  1) - ln( l / toe)T 2 = l n [ 0 p ( T l ) ] -  ln[ep(T2)]  = - In(aT)TIlT 2 (26) 

In(l / to 1 ) -  In(l/ toe)T3 = ln[0p(T 1 ) ] -  ln[0p(T 3)] = - In(aT)TI/T 3 . (27) 

These equations demonstrate the relation between relaxation times and shilt  factor a T, 

Starting with Equ. (14) one may introduce the temperature dependence or a T (Fig. 3b) 

l n a  T = ln[0p(T2) / 0p(Tl) ]  = E / R ( I / T  2 -  I/T1) , (28) 

with E the apparent activation energy of the relaxation processes. 

Proceeding from the general conditions~ which are required by the superposition principle, the same 
relationship is derived from the viscosity 

[G'( toI ,T I )T2p 2 ] /  [G'(toe,T 2) TIp 1] = [ G " ( t o l , T l ) T 2 P 2 ] /  [G"( t0e ,T2)TlPl ]  = 

[n(mI,TI)T2o 2] / [rl(toe,T 2) TlOl]tol/to e = 1 (29) 

ln(aT)TI/T 2 = ln(Oal/m e) = ln{[q(toe,T 2) TIP l ] / [n(Wl,T 1) T202]} = 

In {[P'(toe,T2) B*exp (E/RT 2) Tlla I ] / [ p ' ( t o l , T l )  B*exp (E/RTI) T202] } (30) 

When the considerations concerning Fig. 2 are related to Equ. (15), relation (31) becomes valid, 
and (30) may be simplified to Equ. (32) 
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P'  (~1  ' T 1 )  = p '  ( (Ze ,  T2) TI P l /  (T2P2) (31) 

I n ( aT )  T I l T  2 : l n ( t 0 1 / t o  e) = E / R ( I / T  2 -  l IT 1) (32) 

The most  important  conclusions of these  ref lect ions may be summarized as follows: 

- All s t a t emen t s  are based on the validity of EYRING's transit ion s ta te  theory .  

- The predicted exponential  dependence of the viscosity on the  reciprocal t empera tu re  is not l imited 

to the  Newtonian range of macroscopic deformat ion.  

The aT-sh i f t  factors  are identical for all viscoelastic functions so long as the superposition pr in-  

ciple is applicable.  

- a T exhibits exponential  dependence on the  reciprocal absolute t empera tu re  too.  

Knowing Ht(0)To , F'(0)To and aT(T) all viscoelastic funct ions are defined within the  t ime and 

tempera tu re  range ,  where the  superposition principle is valid. 

4) 
It may be noted finally tha t  the  free volume theory,  which is based on DOOLITTLE's expression , 

q = A' exp (BoVo/  v I) (33) 

WLF_equation 5) 6) 7), which from to + 100 K according to l i te-  yields the  well known applies Tg Tg 

rature log ( q / q o )  = log a T = [ C I , g ( T - T g ) ]  / [ C 2 , g + ( T - T g ) ]  . (34) 

The shift  factor  is related here with the  glass transi t ion t empera tu re  as the re fe rence .  C l ,g  and 

C2~g can be expressed by thermal  expansion coeff ic ients  and the specific volumes at Tg. 

M E T H O D  F O R  T H E  D E T E R M I N A T I O N  O F  T H E  A C T I V A T I O N  E N E R G Y  O F  F L O W  

From the theoret ical  s tandpoint  viscoelastic funct ions are comparable in their reduced form only 

(compare Fig. 2). Consequent ly ,  any shif t  of measured curves is justified only af ter  t empera tu re  

and density correct ion.  However,  in many cases  correction~ especially density correct ion,  is avoid- 

able because of limited accuracy of the measu remen t s .  

Equ. (32) supports tha t  a frequency shif t  is equivalent  to a t empera tu re  change and,  corresponding-  

ly, the shif t  factor  a F can be defined a F = (1 / T  2- 1 / T  1) = ( E / R ) - I  In a T (35) 

Consequently isochrone presenta t ion of measured data  is fully just if ied.  Isochrone mas te rcurves  for 

the  range of cons tant  act ivat ion energy of flow have been performed the  first  t ime by SCHNEIDER 

and CANTOW 1). Figure 3 shows the isotherm and the isochrone mas te rcurves  for a poly(dimethyl-  

siloxane), P "~ 10000, in a spatial presenta t ion .  For this polymer the  apparent  act ivat ion energy 
n 

is cons tant  within the applied t empera tu re  range .  At a t empera tu re  around -70 ~ C partial  cry - 

s tal i izat ion occurs ,  and measurements  become not more reproducible.  Fig. 3 shows the log G ~ sur -  

f ace ,  which is determined by the relaxation t ime spect rum and by t empera tu re  dependence of 

the  relaxation processes .  The shape of this surface  is charac te r i s t ic  for the viscoelastic body and 

can be considered as invariant in its reduced fo rm.  By changing the  t empera tu re  of reduction the  

entire surface is shifted along the Z-ax i s  by the  amount  log(T2/T 1) without changing its shape.  

The cut  of the  surface by the  isotherm planes yields isotherm mas te rcurves .  It should be pointed 

out tha t  all isotherm mas tercurves  originated in this way still have to be reduced to their reference  

temperature in order to correspond to the usual mastercurves (excepted that  w i th  identical reduct -  

ion and reference temperature) .  The cut of the isochrone planes by the surface log G' yields the 

isochrone mastercurves~ all reduced to the same temperature.  

By means of the surface in Fig. 3 some ref lect ions may be done. A point log[G'( log to o , I / To)] on 

this surface may be understood as the intersection of an isotherm wi th an isochrone curve. Figure 

i l lustrates this conception. 
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F igure 3: Spatial presentat ion of  the storage modulus of  poly(dimethysi l~xane),  p % I0000, 
Tg = 142 K,  apparent ac t iva t ion energy of  f low = 16 k3 mole- , reduce~ temp.  = 273 K 
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Let log[G'(log t0 ~ + a, I / T ) ]  and 

log [G ' (log co o, l /T  o+b)]  be two 
points on the isotherm and iso- 
chrone curve, resp., which would 

superpose according to the super- 

position principle and which are 

situated in the direct vicinity of 

an arbitrary point log[G' (log0~o, 
I/T)]. a and b are the respect- 

ive distances on the time and 
temperature axis from this assu- 

med intersection point. Corres- 

pondingly, the following relations 
may be formulated: 
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log[G'(logo) ~ + a , l / T o ) ]  = l o g [ G ' ( l o g ~ , l / T  ~ + b)] 

b / a  = R . l n  1 0 / E  = t g c l  

( l og [G ' ( log~  o + a ,  l / T o ) ]  - log[G'(log~0o, l / T o ) ] } / a  = tg  cx l 

{log[G'(logwo, l / T  ~ + b)] - log[G' ( logw o,  l / T o ) ] } / b  = tg (~2 

tg (x  = tg C~ l / t gcx  2 

(36) 

(37) 

(38) 

(39) 

(4o) 

Equ. (38) and (39) may be wri t tenin a differential form. With (37) and (40) Equation(4I) Iollows 

tg(z t  {8[ log(G0]To/a(]og~0) o} = R .  In 10/E (41) 
tgcl  = - -  = 

tg (x 2 {8 [ log(G')]~0o/~ (1 / T) o } 

Equation (41) represents the theoretical base for a novel insight into the viscoelastic properties of 

linear viscoelastic bodies. This equation makes the statement that the apparent activation energy of 

flow is determinable from the slopes of isotherm and isochrone curves reduced to identical tempe- 

rature. Pre-condition is, however, that both slopes are known at the respective point. Consequent- 

ly,  a general method is offered not only for the determination of activation energies or) more ge- 

nerally) of the temperature dependences of the relaxation processes over the entire temperature 

range. It may be applied also for the construction of both isotherm and isochrone mastercurves 

and of spatial master surfaces. Fig. 5 presents such surface for direct estimation of temperature 

and frequency dependent storage moduli. 

As known, the usual method of estimation of the activation energy of flow is based on viscosity 

measurements and is l imited to the vicinity of zero shear rate, where the activation energy is con- 

stant. Whilst) the temperature dependence of the relaxation behaviour within the non-Newtonian 

range is described using additional data measurable within this range.Likewise the WLF equation is 

supported by the iso-free volume state supposition and the determination of the thermal expansion 

i o  -3 l O  - I  i o  4 l O  0 i o  I f O  l 

Fii~ure 5: Storage modulus ] ' ' ' co (tad/s) I "~ 
master surface of PDMS for |~- ~ '~. . . ,~_t~-  |,o' 
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coefficients. Although the iso-free volume hypothesis tries to relate those quantities to the tempe- 

rature dependences of the relaxation processes, one is left in practice to shift isotherm curves em- 

pir ical ly. 

The proposed method, based on Equ. (41), applies viscoelastic data exclusively, and no additional 

measurements or assumptions have to be made. The temperature dependence of the relaxation be- 

haviour of the linear viscoelastic body wil l be reflected in a temperature dependence of the appar- 

ent activation energy given by these estimations. Thus the requirements for a consistent theory for 

the description of the time and temperature dependent viscoelastic behaviour of linear viscoelastic 

bodies are offered. 

It may be noted that gqu. (41) is not l imited to the storage modulus but applicable in analogeous 

manner for the loss modulus as well for the relaxation modulus. It may be useful for the interpre- 

tation of normal stress coefficients too. 

T E M P E R A T U R E  D E P E N D E N C E  OF THE S H I F T  F A C T O R S  

The relationship between the shift factors and activation energy is given by Equ. (32). As E is 

calculated at different temperatures, and a constancy of E is not imposed, the function E(T) may 

be applied. E(T)/R corresponds to the derivation of In(aT) versus I / T ,  i .  e. 

d{ ln[aT(T)]  } = [E(T)/R]  d ( l l T )  (42) 

Integration yields In [aT(T)] = f l  I TiE (T) I R] d( l  I T) (43) 

I ITre f 

Using Equ. (43) the shift factor may be computed as a function of temperature so long as the appl- 

ied reference temperature is situated within the range, where the apparent activation energy of 

flow has been determined. 

Because the measured temperature dependence is independent of the type of exponential depend- 

ence of the relaxation processes on temperature, a discussion may be performed too concerning the 

applicabil i ty and the range of validity of DOOLITTLE's and EYRING's models. 

Experimental verification of the proposed method on several polymers, with inclusion of the tem- 

perature dependence of the apparent activation energy of flow, wil l be published in near future. 
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